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Abstract

The effect of a near root local blade crack on the stability of a grouped blade disk is investigated in this paper. A bladed

disk comprised of periodically shrouded blades is used to simulate the coupled periodic structure. The blade crack is

modeled using the local flexibility with coupling terms. The mode localization phenomenon introduced by the blade

crack on the longitudinal and bending vibrations in the rotating blades has also been considered. Using the Galerkin’s

method, the imperturbation equations of a bladed disk in which one of the blades is cracked, subject to fluctuations in the

rotation speed, can be derived. Employing the multiple scales method, the boundaries of the instability zones in

the mistuned turbo blade system are approximated. Numerical results indicate that an additional unstable zone is

introduced near the localization frequency and the regions of unstable zones are varied with the crack size and fluctuations

in disk speed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The local structural or material irregularities or defects in a periodic blade-disk system may introduce the
so-called localization phenomenon. The fluctuation energy will be confined in those blades near the disordered
blade. In the last decade, a number of studies were conducted to investigate mode localization in periodic
structures [1–5]. Recently, Cai et al. [6,7] studied mode localization in nearly periodic systems in one, two
and three dimensions. Generally, a periodically shrouded blade disk of a turbo rotor can be regarded
as a typical periodic system. The vibration in a shrouded blade disk was first discussed by Cottney and Ewins
[8]. Due to manufacturing flaws or cyclic fatigue, numerous cracks might be observed after severe operation
[9,10]. The fundamental aspects of the dynamic problem in a system with a local defect were studied by
Afolabi et al. [11–14].

During actual service, the rotation speed of a shrouded blade disk will not always remain constant. The
blade disk is subjected to some small fluctuations. Theoretically, at some specified rotation speed, this
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross section area of the blade
a depth of crack
b width of the blade
c.c. complex conjugate of the preceding

term
E Young’s modulus of material of blade
F ðtÞ the varying rotating speed
s the number of blade
I moment of inertia
ks the stiffness
L length of cantilever beam
N total number of blades
fpgsfqgs displacement vectors of the radial and

transverse directions of sth blade
ps

i ðtÞq
s
i ðtÞ determined coefficient for radial and

transverse direction for the sth blade,
i ¼ 1; 2; . . . ; 5

Rc position of coupled spring
RhRo inner and outer diameter of disk
r arbitrary position on the blade

r̄� dimensionless cracked position on the
blade

t thickness of the blade
usðr; tÞ deflection in radial direction of the sth

blade
vsðr; tÞ deflection in transverse direction of the

sth blade
b̄ dimensionless stiffness
ȳj perturbation frequency
e perturbation parameter
li coefficient
r density of blade
si coefficient
fiðr̄Þciðr̄Þ comparison functions
O rotation speed
O0 the steady-state rotating speed
ō excitating frequency on the system
ō�1 the lowest natural frequency of the

tuned system
ōn natural frequency of the mistuned

system
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small speed fluctuation may drive the system into a dynamically unstable condition. Most of the studies
on the stability of a bladed disk system focused on the speed fluctuation effect [15–18]. Only a few studies,
such as [19], on the flutter stability in mistuned systems, have been conducted. As noted in many papers,
a local defect in a periodical structure may alter its dynamic characteristics and introduce so-called locali-
zation modes in the mistuned periodical system. The stability characteristics of a mistuned blade disk with a
crack is worthy of attention, because local structural or material defects in a blade-disk system are
unavoidable.

In this work, the effect of the localization modes on the dynamic instability of a periodically shrouded
blade disk is studied. A small fluctuation superimposed on a steady rotational speed is assumed to charac-
terize a disturbed rotational speed. For simplicity, the blades are approximated as Euler–Bernoulli beams.
The Galerkin method and the multiple scales perturbation method are used to determine the boun-
daries of instability in this mistuned system. The Coriolis force, coupled vibration, crack size, shrou-
ded stiffness, and rotation speed effects on the instability in the mistuned blade disk are investigated in
this study.
2. Equations of motion

A periodic, shrouded blade disk is shown in Fig. 1(a). The disk system is composed of a rigid hub and a
cyclic assembly of N coupled blades, where an individual blade is modeled simply as a cantilever
Euler–Bernoulli beam. Each blade is coupled with the adjacent blade through a shroud. The length of each
cantilever beam is L ¼ Ro � Rh. Consider that, every blade is coupled by a massless spring ks with the adjacent
blade at position Rc. The notations usðr; tÞ and vsðr; tÞ denote the radial and the transverse flexible deflections of
the sth blade with a rotation speed of O. The moment of inertia and the cross sectional area of the sth blade are
denoted as I and A. The inertia of the cross sectional area is I ¼ bt3=12. b and t are the width and height of the
blade, respectively. E is the Young’s modulus of the blade. The equations of motion for blades with and
without a crack are derived in the following sections.
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Fig. 1. Geometry of the shrouded blade disk.
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2.1. Blades without crack

Considering the Coriolis force effect [20,21], the equations of motion of the sth blade in the radial and
transverse directions are displayed [22]. In this article, the rotational speed is assumed to fluctuate with a small
perturbation speed f(t).

OðtÞ ¼ O0 þ f ðtÞ. (1)

If the constant speed O0 is much smaller than the first natural frequency of the blade [15,23], the centrifugal
force Fc may be assumed to be constant and displayed as

F c ¼
1
2
rAO2

0½ðRh þ LÞ2 � r2�. (2)

The non-dimensional equations of motion for the sth blade in the radial and transverse directions can then be
displayed as

€̄us � að2Ō0 _̄vsÞ � a2 Ō2

0ūs þ
AL2

I
ðū0sÞ
0

� �
¼ 2af̄ _̄vs þ a2ð2Ō0 f̄ þ f̄

2
Þūs, (3a)

€̄vs þ að2Ō0 _̄usÞ þ a2Ō2

0 r̄v̄0s � v̄s �
1

2

Rh

L
þ 1

� �2

� r̄2

" #
v̄00s

( )
þ a2ðv̄00s Þ

00
þ ðb̄sþ1 þ b̄sÞv̄sdðr̄� R̄cÞ

� b̄sþ1v̄sþ1dðr̄� R̄cÞ � b̄sv̄s�1dðr̄� R̄cÞ ¼ �2af̄ _̄us þ a2ð2Ō0 f̄ þ f̄
2
Þv̄s, ð3bÞ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAL4

q
. for s ¼ 1; 2; . . . ;N. The corresponding boundary conditions are

ūs ¼ v̄s ¼ v̄0s ¼ 0 at r̄ ¼ 0, (4a)

ū0s ¼ v̄00s ¼ v̄000s ¼ 0 at r̄ ¼ 1. (4b)
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The non-dimensional parameters are defined as

r̄ ¼
r� Rh

L
and r̄ ¼ 0 to 1, (5a)

v̄sðr̄; tÞ ¼
vsðr̄; tÞ

L
; ūsðr̄; tÞ ¼

usðr̄; tÞ

L
, (5b)

Ō0 ¼ O0

, ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
, (5c)

R̄c ¼
Rc � Rh

L
, (5d)

b̄s ¼
ksL

3

EIs

, (5e)

f̄ ¼ f

, ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
. (5f)

The solutions for the above eigenvalue problem are expressed as

ūsðr̄; tÞ ¼
Xm

i¼1

ps
i ðtÞf

s
i ðr̄Þ, (6a)

v̄sðr̄; tÞ ¼
Xm

i¼1

qs
i ðtÞc

s
i ðr̄Þ, (6b)

where fs
i ðr̄Þ; c

s
i ðr̄Þ are the comparison functions for Eqs. (3a) and (3b), and ps

i ðtÞ; q
s
i ðtÞ are the corresponding

weighting coefficients, which are to be determined. Six exact solutions for a uniform cantilever beam, i.e., three
tensile modes fs

i ðr̄Þ in the axial direction and three bending modes cs
i ðr̄Þ in the transverse direction are used in

this study. They are

fs
i ðr̄Þ ¼ sin si r̄, (7a)

cs
i ðr̄Þ ¼ ðcosh li r̄� cos li r̄Þ �

cos li þ cosh li

sin li þ sinh li

ðsinh li r̄� sin li r̄Þ for i ¼ 1; 2; . . . ;m. (7b)

By applying Galerkin’s method, Eqs. 3(a) and 3(b) can be rewritten in the matrix form as

½m1�sf €pgs þ a½g1�sf _qgs þ a2ð½k1�s þ ½L1�sÞfpgs ¼ 2af̄ ½d1�sf _qgs þ a2ð2Ō0f̄ þ f̄
2
Þ½e1�sfpgs, (8a)

½m2�sf €qgs þ a½g2�sf _pgs þ a2f½½k2�s þ ½L2�s þ b̄sþ1fcðR̄cÞgsfcðR̄cÞg
T
s þ b̄sfcðR̄cÞgsfcðR̄cÞg

T
s �fqgs

� b̄sfcðR̄cÞgsfcðR̄cÞg
T
s�1fqgs�1 � b̄sþ1fcðR̄cÞgsfcðR̄cÞg

T
sþ1fqgsþ1g ¼ �2af̄ ½d2�sf _pgs þ a2ð2Ō0f̄ þ f̄

2
Þ½e2�sfqgs

for s ¼ 1; 2; . . . ;N and c
� �

s
¼ ½cs

1;c
s
2;c

s
3; . . . ;c

s
m�

T. ð8bÞ

Due to the cyclic arrangement of blade, it leads to

fpgNþ1 ¼ fpg1; fqgNþ1 ¼ fqg1.
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For simplicity, the same comparison function is assumed for individual blades, i.e., fs
j ðr̄Þ � fjðr̄Þ;c

s
j ðr̄Þ � cjðr̄Þ.

Combining the above two equations for the sth blade, yields

½m�s

€p

€q

( )
s

þ a½g�s
_p

_q

( )
s

þ a2 ½½k�s þ ½L�s þ b̄sþ1½F� þ b̄s½F��
p

q

( )
s

(
� b̄s½F�

p

q

( )
s�1

� b̄sþ1½F�
p

q

( )
sþ1

)

¼ 2af̄ ½d�s

_p

_q

( )
s

þ a2ð2Ō0f̄ þ f̄
2
Þ½e�s

p

q

( )
s

. ð9Þ

2.2. Blade with a crack

A number of researchers [24–26] have studied the effect of cracks on the dynamic and static structural
behaviors. Some articles from Refs. [27–30] also dealt with the effect of cracks on rotating machinery. More
recent articles like Refs. [31–34] investigate the stability of a rotating blade without or with a crack. No
investigation studies the stability on mode localization in a rotating periodic blades system. The cracked
shrouded blade disk may be regarded as a mistuned system. Consider a crack located at r̄ ¼ r̄� on the xth
blade. The strain energy of the defective blade will consist of the released energy caused by the crack. The
released energy caused by a crack with a depth of a may be expressed as

Uc
x ¼ b

Z a

0

ð1� m2Þ
E

K2
I da, (10)

where m is the Poisson’s ratio of the blade, and KI is the stress intensity factor under a mode I load. As noted in
Ref. [24], this stress intensity factor KI will be considered as KI ¼ KI1 þ KI2, if the deflection is coupled from
the longitudinal and bending deformations. In this case, the stress intensity factors KI1 and KI2 can be
approximated by [25] as

KI1 ¼
6p1

t2b

ffiffiffiffiffiffiffi
pḡt

p
F I1ðḡÞ, (11a)

KI2 ¼
p2

tb

ffiffiffiffiffiffiffi
pḡt

p
FI2ðḡÞ (11b)

with

p1 ¼ EIv00xjr̄¼r̄� , (12a)

p2 ¼ EAu0xjr̄¼r̄� , (12b)

ḡ ¼
a

t
, (13)

FI1ðḡÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pḡ
tan

pḡ
2

� �s
0:923þ 0:199½1� sinðpḡ=2Þ�4

cosðpḡ=2Þ
, (14a)

F I2ðḡÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pḡ
tanðpḡ=2Þ

s
0:752þ 2:02ðḡÞ þ 0:37½1� sinðpḡ=2Þ�3

cosðpḡ=2Þ
. (14b)

Adapting Eq. (10) gives

Uc
x ¼ b

ð1� m2Þ
E

Z a

0

6EIv00xdðr̄� r̄�Þ

t2b

ffiffiffiffiffiffiffi
pḡt

p
F I1ðḡÞ

� �( 2

þ 2
6EIv00xdðr̄� r̄�Þ

t2b

ffiffiffiffiffiffiffi
pḡt

p
F I1ðḡÞ

� �

�
EAu0xdðr̄� r̄�Þ

tb

ffiffiffiffiffiffiffi
pḡt

p
FI2ðḡÞ

� �
þ

EAu0xdðr̄� r̄�Þ

tb

ffiffiffiffiffiffiffi
pḡt

p
F I2ðḡÞ

� �2)
da. ð15Þ
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The boundary conditions of the defective blade are the same as that for the sth blade, i.e., the blade without a
crack. Therefore, the equations of motion for the xth cracked blade can be derived as follows:

€̄ux � að2Ō0 _̄vxÞ � a2 Ō2

0ūx þ
AL2

I
ðū0xÞ

0

� �
þ a2 24

L

t
ð1� m2ÞQ3ðḡÞ½ū

0
xdðr̄� r̄�Þ�

� �0
½12ð1� m2ÞQ2ðḡÞ½v̄

00
xdðr̄� r̄�Þ��

� 	

¼ 2af̄ _̄vx þ a2ð2Ō0f̄ þ f̄
2
Þūx, ð16aÞ

€̄vx þ að2Ō0 _̄uxÞ þ a2Ō2

0 r̄v̄0x � v̄x �
1

2

Rh

L
þ 1

� �2

� r̄2

" #
v̄00x

( )
þ a2ðv̄00xÞ

00

� a2 ½12ð1� m2ÞQ2ðḡÞ½ū
0
xdðr̄� r̄�Þ�00� þ 6ð1� m2Þ

t

L
Q1ðḡÞ½v̄

00
xdðr̄� r̄�Þ�00

n o
þ ðb̄xþ1 þ b̄xÞv̄xdðr̄� R̄cÞ � b̄xþ1v̄xþ1dðr̄� R̄cÞ � b̄xv̄x�1dðr̄� R̄cÞ ¼ �2af̄ _̄ux þ a2ð2O0 f̄ þ f̄

2
Þv̄x, ð16bÞ

where

Q1ðḡÞ ¼
Z ḡ

0

pḡF2
I1ðḡÞdḡ, (17a)

Q2ðḡÞ ¼
Z ḡ

0

pḡF I1ðḡÞFI2ðḡÞdḡ, (17b)

Q3ðḡÞ ¼
Z ḡ

0

pḡF2
I2ðḡÞdḡ. (17c)

The boundary conditions for the xth cracked blade are the same as Eqs. 4(a) and 4(b). Similarly, the equations
of motion for the defective blade, i.e., Eqs. 16(a) and 16(b), can also be rearranged in the matrix form using
Galerkin’s method.

2.3. Total blade-disk system

The equation of motion for the assembled blade-disk system can now be given by

½M�f €X g þ a½G�f _X g þ a2½K �fX g ¼ 2af̄ ½D�f _X g þ a2ð2Ō0 f̄ þ f̄
2
Þ½E�fX g, (18)

where the system stiffness matrix [K] is

½K � ¼

½Z̄�1 �b̄2½F� 0 � 0 0 �b̄1½F�

�b̄2½F� ½Z̄�2 �b̄3 F½ � � 0 0 0

0 �b̄3½F� ½Z̄�3 � 0 0 0

� � � � � � �

0 0 0 � ½Z̄�N�2 �b̄N�1½F� 0

0 0 0 � �b̄N�1½F� ½Z̄�N�1 �b̄N ½F�

�b̄1½F� 0 0 � 0 �b̄N ½F� ½Z̄s�N

2
666666666664

3
777777777775
. (19)

The displacement vector is

fX g ¼ fxgT1 ; fxg
T
2 ; . . . ; fxg

T
N�1; fxg

T
N


 �T
(20)

and

fxgs ¼
p

q

( )
s

,
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½Z̄�s ¼ ½k�s þ ½L�s þ b̄sþ1½F� þ b̄s½F�, (21)

b̄1 ¼ b̄Nþ1. (22)

For solving the eigenvalue problem of the system, i.e., Eq. (18), a space vector is introduced

Vf g ¼
_X

X

( )
. (23)

Substituting Eq. (23) into Eq. (18), the equation can be rearranged as

½M� 0

0 a2½K �

" #
f _Vg þ

a½G� a2½K �

�a2½K � 0

" #
fVg ¼ 2f̄

a½D� 0

0 0

� �
fVg þ ð2Ō0f̄ þ f 2

Þ
0 a2½E�

0 0

" #
Vf g. (24)

The non-dimensional frequencies ōn in Eq. (24), i.e., the natural frequencies of the mistuned system, are
defined as

ōn ¼ on

, ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
for n ¼ 1; 2; . . . . (25)

3. Perturbation analysis

Eq. (24) is a set of simultaneous differential equations, which are difficult to solve directly. To make the
calculation easier, modal analysis application is employed here. After applying the modal analysis method, the
simultaneous differential equation, can be rewritten as

½I �f _ug þ ½A�fug ¼ �2
f̄

Ō0

½S�fug �
2f̄

Ō0

þ
f̄
2

Ō2

0

 !
½Q�fug (26)

with

½D�T
½M� 0

0 a2½K�

" #
½D� ¼ ½I � ¼

1 0 0 � � � 0

0 1 0 � � � 0

..

. . .
. ..

.

0 0 0 1

2
66664

3
77775, (27a)

½D�T
a½G� a2½K �

�a2½K � 0

" #
½D� ¼ ½A�, (27b)

�Ō0½D�T
a½D� 0

0 0

� �
½D� ¼ ½S�, (27c)

�Ō
2

0½D�
T 0 a2½E�

0 0

" #
½D� ¼ ½Q�, (27d)

fVg ¼ ½D�fug. (27e)
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The normalized modal matrix [D] is comprised of m modes from Eq. (24) with no perturbation terms. The
block diagonal matrix [A] is

A½ � ¼

0 �ō1

ō1 0

" #
0½ � 0½ � 0½ � 0½ � 0½ �

0½ �
0 �ō2

ō2 0

" #
0½ � 0½ � 0½ � 0½ �

� � � �

� � � �

� � � �

0½ � 0½ � � � 0½ �
0 �ōm

ōm 0

" #

2
666666666666666664

3
777777777777777775

. (28)

Eq. (26) can then be uncoupled, and displayed in the component form as

_Bn � ōnZn ¼ �2
f̄

Ō0

XR

r¼1

S11
nr zr þ

XR

r¼1

S12
nrZr

 !
� 2

f̄

Ō0

þ
f̄
2

Ō2

0

 ! XR

r¼1

Q11
nr zr þ

XR

r¼1

Q12
nrZr

 !
, (29a)

_Zn þ ōnBn ¼ �2
f̄

Ō0

XR

r¼1

S21
nr zr þ

XR

r¼1

S22
nrZr

 !
� 2

f̄

Ō0

þ
f̄
2

Ō
2

0

 ! XR

r¼1

Q21
nr zr þ

XR

r¼1

Q22
nrZr

 !
, (29b)

where S
ij
nl and Q

ij
nl are the i�jth entries of the n�lth block matrices of [S] and [Q], and

fug ¼ ½B1; Z1; B2; Z2; . . . ; BR; ZR�.
In this article, the perturbation velocity, f̄ ðtÞ, is assumed to be very small and periodic. Therefore, it

can be expressed as a Fourier series, i.e., f̄ ðtÞ ¼
PQ

j¼�QFje
iȳj t, where the parameter ȳj is the perturbation

frequency. As noted, the fluctuation term f̄ ðtÞ is so small in comparison to the constant speed Ō0 that the
module Fj should also be much smaller than Ō0. Consider a small parameter term e defined as jF M j=Ō0, where
jFM j is the maximum magnitude of component Fj for j ¼ 1; 2; 3; . . . ;Q. Then Eqs. (29a) and (29b) can be
rewritten as

_Bn � ōnZn ¼ �2e ~f
XR

r¼1

S11
nr zr þ

XR

r¼1

S12
nrZr

 !
� 2e ~f þ e2 ~f

2
�  XR

r¼1

Q11
nr zr þ

XR

r¼1

Q12
nrZr

 !
, (30a)

_Zn þ ōnBn ¼ �2e ~f
XR

r¼1

S21
nr zr þ

XR

r¼1

S22
nrZr

 !
� 2e ~f þ e2 ~f

2
�  XR

r¼1

Q21
nr zr þ

XR

r¼1

Q22
nrZr

 !
, (30b)

where ~f ¼ f̄ =jF M j.
By employing the multiple scales perturbation method [15], the solution for Eqs. (30a) and (30b) can then be

expressed in terms as

unðt; eÞ ¼ un0ðT0;T1;T2; . . .Þ þ eun1ðT0;T1;T2; . . .Þ þ e2un2ðT0;T1;T2; . . .Þ þ � � � , (31)

where Ta ¼ eat for a ¼ 0; 1; 2; . . ..
Substitute Eq. (31) into Eqs. (30a) and (30b), leading to
Order e0

D0Bn0 � ōnZn0 ¼ 0, (32a)

D0Zn0 þ ōnBn0 ¼ 0. (32b)
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Order e1

D0Bn1 � ōnZn1 ¼ �D1Bn0 � 2 ~f
XR

r¼1

S11
nr zr0 þ

XR

r¼1

S12
nrZr0

 !
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and q=qTj ¼ Dj. Due to the complexity of this investigation and the small difference in the first- and second-
order approximation results [17,18,20], the second-order expansion was not carried out in this study. Based on
the first-order approximate solution, it yields

Bn0 ¼ AnðT1Þ expðiōnT0Þ þ c:c:, (35a)

Zn0 ¼ iAnðT1Þ expðiōnT0Þ þ c:c:, (35b)

where AnðT1Þ is an undetermined function of T1, and the corresponding complex conjugate terms are denoted

by c.c. Assuming that ~f 0 ¼ 0 and ~f ¼
PQ
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and 35(b), into Eqs. 33(a) and 33(b), the following solutions can be derived:
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i½ȳj�ȳr�T0

n o
þ c:c:, ð36aÞ
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where, Ār denotes the complex conjugate of Ar. This choice depends upon the resonant combinations of
the frequencies. Three different cases were considered herein. All of the resonant combination cases will be
studied as follows.
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Fig. 3. The localization mode shape of a cracked blade-disk system (b̄ ¼ 0:05, R̄c ¼ 1:0, Ō0 ¼ 0:5).
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Fig. 2. Tip displacement patterns of a cracked blade-disk system at the lowest natural frequency. (with b̄ ¼ 0:05, R̄c ¼ 1:0, Ō0 ¼ 0:5): (a)
without a crack, ḡ ¼ 0:0; (b) with a crack, ḡ ¼ 0:025.
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(i)
Fig

crac
the frequency ȳj is away from ōp � ōq
The existence of the term e n 0 in the general solutions for Eqs. 36(a), and 36(b) may make it difficult to find
the particular solutions. For simplicity, the corresponding particular solutions are assumed as
iō T

Bn1 ¼ Bn1ðT1Þe
iōnT0 þ c:c:, (37a)

Zn1 ¼ Bn2ðT1Þe
iōnT0 þ c:c:, (37b)

where Bn1 and Bn2 are the coefficients to be determined. Substituting the above equations into Eqs. 36(a) and
36(b), it leads to

iōnBn1 � ōnBn2 ¼ �D1An, (38a)

ōnBn1 þ iōnBn2 ¼ �iD1An. (38b)

The coefficients of Bn1 and Bn2 can be solved, if and only if the following equation can be satisfied:

iōn �D1An

ōn �iD1An

�����
����� ¼ 0. (39)

Eq. (39) yields the results, in which D1An must be null. In other words, the value of AnðT1Þ should be a
constant. Hence, the system would be always stable in this state.
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(ii)
Fig.

insta
the frequency ȳj near to ōp þ ōq

The transition curves were used to mark the boundaries between the stable and the unstable zones. In this
case, the transition curves are
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(iii)
 the frequency ȳj near to ōp � ōq

Similarly, the different types of combination resonance transition curves can be solved from

ȳj ¼ ōp � ōq � 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LpqLqp

p
þOðe2Þ. (42)
4. Numerical results and discussions

As noted in many papers [14], a local crack in a periodically shrouded blade may not only alter the local
stiffness of this blade, but may also introduce the so-called mode localization phenomenon. Theoretically, the
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mode localization phenomenon will confine the energy of the fluctuating vibration to just a few blades near the
cracked blade at the localization frequency. The interaction between the crack size and mode localization speeds
up the crack propagation and enhance the localization. To investigate the possible effect of the mode localization
phenomenon on the dynamic instability zones in a mistuned periodical system, a shrouded blade disk with 46
blades attached to a rigid hub was simulated numerically. A near root crack on the 23rd blade was assumed in
this mistuned blade-disk system. The shape parameters of blades were: ðRh=LÞ ¼ 0:5, ðb=LÞ ¼ 0:227,
ðt=LÞ ¼ 0:08, and r̄� ¼ 0. The effects of rotation speed, crack size and shroud stiffness on the stability zone
variations were studied. For simplicity, the perturbation speed was assumed to be f̄ ðtÞ ¼ 2 cos ōt.

For the sake to study mode localization, a number of apparently identical blades are distributed periodically
around a rigid hub. In other words, the effect of disk flexibility is ignored in this study. Similar models have been
employed in Refs. [3–5,14]. Based on the rigid hub assumption, the zero nodal diameter mode is not included in
this paper. The mode localization effect on the lowest mode is illustrated in Fig. 2. Fig. 2(a) shows the blade tip
displacement pattern in this blade-disk system without any crack, i.e., ḡ ¼ 0. A uniform tip displacement was
found for the lowest mode. The blade tip displacement pattern of the system with a crack ḡ ¼ 0:025 in size is
shown in Fig. 2(b). Fig. 3 displays the corresponding mode shape for this localization mode. The blade tip
displacement pattern or the mode shape shows modal localization in this mistuned system. The vibration energy
will be confined to just a few blades that are near the cracked blade, i.e., the 23rd blade. Fig. 4 shows the difference
in frequency responses for the tuned and mistuned systems at the tip of the 23rd blade. Due to the repeated
frequencies, ō1 ¼ ō2 ¼ � � � ¼ ō46 ¼ 3:550, of the periodic system, only a single peak at ō1 ¼ 3:550 is observed for
the tuned system, i.e., a system without any cracks. Contrary to the single peak in the tuned system, a quite
complicated frequency spectrum distribution, as shown in Fig. 4(b), was found in the system if a local crack near
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crack; (b) with a crack of size ḡ ¼ 0:05.



ARTICLE IN PRESS
B.-W. Huang, J.-H. Kuang / Journal of Sound and Vibration 294 (2006) 486–502 499
the blade root existed. Multiple peaks are found near the lowest frequency, i.e., the localization frequency
ō1 ¼ 3:545. Fig. 5(a) shows the unstable zone distribution in the mistuned system. Results indicated that a wide
unstable region, i.e., 2ō ¼ 7:0927:33, was grouped by a bundle of 46 very close unstable zones. These individual
unstable zones arise from a bond of local frequencies ō1; . . . ; ō46. Fig. 5(b) shows the details of these closely
distributed individual unstable zones. This grouped unstable zone is related to the spread of the frequencies as
shown in Fig. 4(b). The localization phenomenon introduced by the local crack split the 46 identical lowest
frequencies of a periodically arranged shrouded blade system into a series of 46 closely distributed frequencies.
These closely distributed unstable regions were grouped and made a wide unstable band. In other words, the modal
localization arising from a local blade crack might expand the unstable region near the local mode frequency.

The dynamic stability in a cracked shrouded blade-disk system may be affected by different parameters, i.e.,
the crack size, rotation speed and the shroud stiffness. The effect of local crack on the dynamic stability in this
shrouded system is shown in Figs. 6(a) and (b). A grouped unstable zone, as shown in Fig. 6(a), was found for
the blade-disk system without a crack, i.e., ḡ ¼ 0:0. The lowest natural frequency, i.e., the so-called
localization frequency, will shift from 2ō1 ¼ 7:1005 to a lower frequency value 2ō1 ¼ 6:978 as the crack size is
propagated from ḡ ¼ 0:0 to 0.050. Results in Fig. 6(b) show that an additional unstable band near the
localization frequency is introduced due to the existence of the local crack. The unstable zone, as shown in
Fig. 6(b), is enlarged as the crack size is increased. Hence, it can be concluded that the local crack enlarges the
unstable zone and shift it toward a lower frequency region. Figs. 7(a) and (b) show the variation in the
dynamic stability as the rotation speed is increased from Ō0 ¼ 0:25 to 5.0. Results indicated that the unstable
band is enlarged and shifts to a higher frequency region as the rotation speed Ō0 is increased.
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As noted by a number of investigators [4,5], the degree of localization depends significantly upon the
magnitude of the disorder and coupling stiffness. In a mistuned blade-disk system, the shroud stiffness is
considered as the coupling stiffness. The stability zones in this mistuned blade-disk system with various shroud
stiffness, b̄ ¼ 0:05 and 0.5, are plotted in Figs. 8(a) and (b). The calculated results indicated that the effect of
the shroud stiffness in this periodic system is also one of the most sensitive parameters. Excluding the
localization frequency ō1, the other natural frequencies ō22ō46 will increase and spread out as the coupling
stiffness is increased. The unstable band would swell as the coupling stiffness is increased.

Fig. 9 displays the variations in dynamic stability for the mistuned blade-disk system with and without
considering the Coriolis effect. These results indicate that the first unstable zone near 2ō1 may shift to a lower
frequency as the Coriolis effect is considered.

5. Conclusions

The localization mode effect on the stability in a rotational blade disk with a cracked blade was investigated.
Simulated results indicated that the local crack may not only confine the disturbed energy in the blades to
those near the cracked blade but also may change the instability range of the disordered blade disk
significantly. The major conclusions that can be drawn from this study, are given as
(1)
 The crack depth is one of the most important parameters for stability in a rotating mistuned blade-disk
system. The shift in localization frequency will enlarge the total unstable zone near the frequency 2ō1 as
the depth of the crack increases.
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(2)
 The rotational speed may also change the instability zone in the mistuned system. It is observed that the
unstable band ð2ō122ō46Þ will expand and shift towards a higher frequency range as the rotational speed
increases.
(3)
 Simulated results indicate that the instability band will swell as the shroud stiffness increases in a mistuned
blade-disk system.
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